Structure Cristalline et Moléculaire de l'Isocollybolide

PAR CLAUDINE PASCARD-BILLY

Laboratoire de Cristallochimie, Institut de Chimie des Substances Naturelles, C.N.R.S., 91-Gif-sur-Yvette, France

(Reçu le 11 mars 1971)

Isocollybolide and collybolide are two isomeric sesquiterpenoids. Isocollybolide crystallizes in space group $P2_12_12_1$. The symbolic-addition procedure gave an original formula. The structure has been refined to a final R of 9.6%. From the spatial configuration of isocollybolide, the correct formula of collybolide can be deduced.

Le collybolide est une substance nouvelle extraite d'un champignon, le *Collybia maculata* Alb. ex Fries. Bien que découverte en 1911 (Goris & Macre, 1911), elle ne fut réétudiée qu'en 1957 (Janot, le Men & Pourrat, 1957). Sa formule brute, C₂₂H₂₀O₇, fut déterminée par spectrométrie de masse en 1961. Plus récemment (Bui, Parello, Potier & Janot, 1970; Janot, Bui, Parello, Pascard-Billy & Potier, 1970), l'existence de deux isomères fut mise en évidence. Deux formules parmi les plus probables furent retenues: (I) et (II):

Les valeurs des constantes de couplage $J_{5,9}$ entre les protons H(5) et H(9) sont de 13,6 Hz pour le collybolide et 2,6 Hz pour son isomère. Ceci permet d'attribuer une jonction *trans* des cycles A et B dans le cas du collybolide, et cis dans le cas de l'isocollybolide.

La fragilité de la molécule rendant toute réaction chimique difficile à exploiter et l'isocollybolide donnant de beaux cristaux, l'analyse de la structure cristalline aux rayons X était tout indiquée pour en déterminer la configuration moléculaire.

Données cristallographiques:

Isocollybolide $C_{22}H_{20}O_7$ m.p.: 202° orthorhombique groupe spatial: $P2_12_12_1$ Z=4 $a=6,490\pm0,009,\ b=12,408\pm0,008,\ c=23,960\pm0,013\ Å$ $V=1929,9\ Å^3$ $d_m=1,35$ $d_c=1,363$ $\lambda=1,5418$ $F_{000}=832$ e.

On a enregistré les réflexions photographiquement avec une chambre de Weissenberg et le rayonnement $K\alpha$ du cuivre. 2106 intensités, dont 1883 non nulles, ont été mesurées au microdensitomètre. Elles ont été corrigées du facteur de Lorentz-polarisation. Aucune correction d'absorption n'a été appliquée.

Résolution de la structure

La structure a été résolue par la méthode d'addition symbolique pour les structures non-centrées (Karle & Karle, 1966). Les facteurs de structure normalisés E ont été calculés, après la remise à l'échelle des différentes strates au moyen de la courbe K. La distribution des E est la suivante:

	expérience	théorie
$\langle E^2 \rangle$	0,999	1,000
$\langle E \rangle$	0,858	0,886
$\langle E^2 - 1 \rangle$	0,812	0,736
E > 3	0,38%	0,01 %
E > 2	3,1	1,8
E > 1	33.5	37.0

Nos résultats sont en bon accord avec les valeurs théoriques (Karle, Dragonette & Brenner, 1965). Nous n'avons gardé que les 220 E > 1,5 pour appliquer la relation \sum_2 .

Les E choisis pour déterminer l'origine et ceux auxquels on a attribué des symboles sont les suivants:

h	\boldsymbol{k}	I	E		
0	1	20	3,36	$+\pi/2$	
1	0	21	2,73	$+\pi/2$	origine
5	7	0	3,08	$+\pi/2$	
0	14	11	2,97	O	énantiomorphe
0	7	8	3,09	a	
0	8	10	4,24	b	
1	4	1	2,30	c .	

En fonction de ces phases, 60 phases furent déterminées par la relation Σ_2 . Pour sélectionner les valeurs les plus probables des symboles, a, b, c, nous avons appliqué une méthode récemment mise au point par

Riche (1970). Nous avons obtenu $a=-\pi/2$, b=0, $c=+\pi/2$. En affinant les phases par la méthode des tangentes (Karle & Hauptman, 1956) 141 phases ont été calculées comme probables, et introduites dans une

synthèse de Fourier. On a pu distinguer deux cycles hexagonaux. Les phases calculées avec ces 10 atomes ont été introduites dans un programme d'affinement par la formule des tangentes. La deuxième carte E a

Tableau 1. Facteurs de structure observés et calculés

	hk	
00000000000000000000000000000000000000	1	
	Ę0	
	c o	
	×°	
** [5] [5] [5] [5] [5] [5] [5] [5] [5] [5]	hkl	
	Fo	
TETTI OLITETTI	Fc	
	O4°	
	hkl	
	Fo	
<u>o de la compositional de la completa del completa della completa </u>	F	
	ox°	
	hkl	
and and an and an and an	P	
Tistamatiki intalikan minin minin minin minin manakan manakan manakan manakan manakan manakan makan makan mana	٦	
n andre menter described kommente, andre alles alles alles de describentations de describentations de describe	∝°	
	hkl	
	Б	
	Ę	
on the control of the	ox°	

Tableau 1 (suite)

kl	Æ	∞°	hkl	હ	Fc	ov°	h k	1	Б	Fc	oo°	hkl	Fo	Ę	∝°	hkl	Fo	Fc	oo°
100-100-100-100-100-100-100-100-100-100		ich den der	1 10 10 10 10 10 10 10 10 10 10 10 10 10	117 117 117 117 117 117 117 117		MANAMENTAL PROPERTY OF THE PRO					paramentalisa da de la compressió de la compansió de la compansió de la compansió de la compansió de la compand								AND AND INCOMEDIATION OF A SECTION OF A SECT

montré presque tous les atomes. Les atomes manquant (composant le furanne, et thermiquement plus agités que les autres) ont été décelés sur une série différence. Les coordonnées de tous les atomes lourds ainsi que leurs facteurs d'agitation thermique isotropes, puis anisotropes, ont été affinés par moindres carrés (Busing, Martin & Levy, 1962). Les atomes d'hydrogène ont été introduits à leur position calculée sauf les trois

Tableau 2. Coordonnées atomiques et coefficients d'anisotropie thermique et leur écart-type (×104)

Le facteur de température de chaque atome est de la forme: exp $[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + \beta_{13}hl + \beta_{23}kl)]$

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	-1074(13)	-4819 (6)	-1854(3)	-167(25)	-51(4)	-10(1)	-10(9)	-2(4)	1 (2)
C(2)	-3293(12)	5167 (5)	1878 (3)	117 (20)	39 (4)	11 (1)	17 (7)	14 (4)	4(2)
C(3)	-3611(12)	6026 (5)	2323 (3)	126 (20)	28 (4)	16 (1)	7 (7)	9 (4)	4(2)
C(4)	-3496(11)	5335 (4)	2851 (3)	40 (15)	25 (3)	14 (1)	11 (6)	4 (3)	2(2)
C(5)	-1231(11)	5005 (4)	2936 (3)	60 (18)	27 (3)	11 (1)	12 (6)	4 (3)	2(2)
C(6)	- 515 (10)	4367 (5)	3447 (2)	76 (17)	33 (3)	9 (1)	6 (7)	2 (3)	4(2)
C(7)	-1521(12)	3258 (5)	3487 (2)	171 (21)	22 (3)	9 (1)	9 (7)	1 (3)	2(2)
C(8)	— 845 (12)	3151 (5)	2449 (3)	126 (19)	38 (4)	13 (1)	38 (7)	17 (4)	4(2)
C(9)	– 373 (10)	4365 (5)	2426 (3)	40 (19)	33 (3)	14 (1)	3 (6)	3 (3)	$\stackrel{\cdot}{2}\stackrel{\cdot}{(2)}$
C(10)	– 537 (15)	2544 (6)	3913 (3)	213 (28)	35 (4)	10 (1)	29 (8)	5 (4)	3(2)
C(11)	-1525(20)	2349 (18)	3999 (4)	318 (38)	56 (5)	16 (2)	36 (13)	17 (6)	6 (3)
C(12)	– 205 (22)	1409 (9)	4613 (5)	389 (43)	87 (9)	19 (2)	44 (16)	19 (7)	27 (4)
C(13)	-1607 (24)	1954 (10)	4323 (6)	327 (48)	83 (9)	31 (2)	2 4 (18)	47 (9)	18 (4)
C(14)	-4516 (10)	5862 (4)	3361 (3)	83 (18)	67 (3)	18 (1)	50 (6)	8 (4)	5 (2)
C(15)	-4741 (11)	4356 (4)	2649 (3)	48 (17)	20 (3)	15 (1)	11 (6)	6 (4)	1 (2)
C(16)	— 438 (13)	5098 (6)	4337 (3)	96 (22)	34 (4)	12 (1)	19 (8)	2 (4)	1(2)
C(17)	– 350 (10)	5687 (4)	4838 (2)	151 (18)	29 (3)	10(1)	26 (6)	4 (3)	$\overline{2}(\overline{1})$
C(18)	-2334(11)	6049 (4)	4883 (2)	177 (22)	42 (3)	12(1)	7 (7)	10 (3)	2 (1)
C(19)	-2974 (12)	6641 (5)	5351 (2)	216 (22)	49 (4)	14 (1)	11 (8)	17 (4)	3 (2)
C(20)	-1525(17)	6794 (6)	5794 (3)	413 (32)	50 (4)	14 (1)	40 (10)	17 (5)	8 (2)
C(21)	- 412 (16)	6401 (7)	5755 (3)	365 (33)	76 (6)	12 (1)	44 (12)	5 (5)	3 (2)
C(22)	-1048 (13)	5834 (5)	5275 (3)	278 (24)	46 (3)	12 (1)	26 (7)	0 (3)	0 (2)
O(1)	– 771 (12)	2574 (4)	2050 (2)	440 (26)	48 (3)	10 (1)	80 (7)	13 (4)	9 (2)
O(2)	-1276 (9)	2678 (3)	2948 (2)	211 (17)	31 (2)	9 (1)	8 (5)	9 (3)	2(1)
O(3)	-4589 (8)	4280 (3)	2086 (2)	64 (12)	34 (2)	14 (1)	15 (5)	12 (2)	0 (1)
O(4)	-5788(8)	3747 (4)	2915 (2)	54 (14)	45 (3)	20 (1)	16 (5)	3 (3)	2(2)
O(5)	-1061 (8)	4905 (4)	3959 (2)	73 (15)	30 (3)	9 (1)	8 (5)	4 (2)	6 (1)
O(6)	-2192(12)	4859 (6)	4261 (3)	145 (20)	87 (5)	16 (1)	12 (9)	5 (4)	9 (2)
O(7)	-1785 (20)	1645 (8)	4434 (4)	595 (44)	88 (7)	27 (2)	87 (15)	63 (8)	8 (3)

atomes du groupe méthyle. Ceux-ci sont apparus très clairement sur une série différence. Seuls, les atomes H(20) et H(22) sont restés absents. Les atomes légers ont été inclus dans l'affinement avec le facteur de température isotrope de l'atome de carbone qui leur est lié. La pondération utilisée a été calculée en fonction de l'erreur de mesure des intensités. Le R final est 9,6%.

Les facteurs de structure observés et calculés sont donnés dans le Tableau 1. Les coordonnées définitives

Tableau 3. Coordonnées des atomes d'hydrogène (×10⁴)

	x	y	z
H(1e)	-862	4291	1550
H(1a)	-180	5429	1732
H(2)	-3820	5460	1470
H(3e)	-4931	6439	2280
H(3a)	- 2570	6621	2311
H(5)	404	5803	2955
H(6)	1170	4260	3420
H(7)	 3167	3358	3536
H(9)	-1310	4450	2440
H(11)	-2770	2770	3760
H(12)	-620	860	4940
H(13)	- 3240	1920	4400
$H(14_1)$	-4576	5367	3521
$H(14_2)$	- 3689	6666	3694
$H(14_3)$	– 5899	6221	3288
H(18)	-3408	5855	4685
H(19)	-4529	7002	5359
H(20)	- 1780	7230	6180
H(21)	-1410	6540	6110
H(22)	-2590	5510	5240

et les coefficients β_{ij} d'agitation thermique sont rassemblés dans le Tableau 2. Le Tableau 3 contient les coordonnées approchées des atomes d'hydrogène. Nous avons calculé, à l'aide des facteurs de température ani-

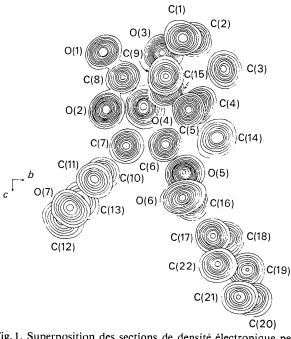


Fig. 1. Superposition des sections de densité électronique perpendiculaires à l'axe a.

sotropes les déplacements quadratiques moyens des atomes que nous donnons dans le Tableau 4 ainsi que les facteurs de température isotropes moyens qu'ils représentent.

Description de la structure

La Fig. 1 représente les sections de densité électronique superposées le long de l'axe a. Le résultat le plus re-

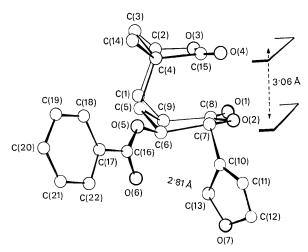


Fig. 2. Vue en perspective de l'isocollybolide.

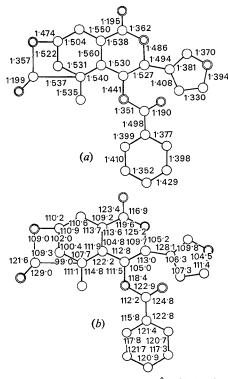


Fig. 3. (a) Longueur des liaisons en Å. (b) Angles intramoléculaires.

Tableau 4. Déplacements quadratiques moyens (×104) le long des axes principaux

Angles en degrés de ces axes avec les axes cartésiens définis de la façon suivante:

x suivant a y suivant $(\mathbf{a} \times \mathbf{b}) \times \mathbf{a}$ z suivant $(\mathbf{a} \times \mathbf{b}) = \mathbf{c}$

	$B(Å^2)$	Axe	Axe	Axe			Angles avec	les a	xes car	rtésiens		
		1	2	3	1a 1b	1 c	2a	2b	2c	3a	3b	3 c
C(1)	2,76	1720	1823	2065	75 96	16	144	124	81	122	35	77
C(2)	2,34	1312	1597	2154	31 78	62	85	33	123	121	60	46
C(3)	2,49	1345	1660	2216	120 35	107	145	124	98	106	80	19
C(4)	1,80	0820	1422	2031	19 109	87	107	159	101	97	100	12
C(5)	1,75	0971	1529	1840	23 63	80	62	151	97	96	101	12
C(6)	1,82	1208	1498	1790	152 69	73	118	130	128	92	133	43
C(7)	2,09	1269	1614	1932	99 18	75	99	77	164	13	79	96
C(8)	2,48	1044	1673	2349	141 56	106	102	131	137	126	121	51
C(9)	1,96	0913	1587	2025	6 95	94	96	167	101	87	101	11
C(10)	2,64	1346	1752	2265	66 141	61	81	118	150	26	65	94
C(11)	4,14	1612	2323	2785	64 131	53	90	132	138	154	109	73
C(12)	5,40	1424	2595	3429	90 130	40	34	115	111	56	50	58
C(13)	5,90	1909	2392	3610	127 116	49	54	143	89	58	67	41
C(14)	3,21	0787	2281	2525	28 115	102	110	107	152	71	32	114
C(15)	1,81	0852	1322	2096	151 62	95	118	151	97	98	94	9
C(16)	2,15	1228	1746	1896	34 55	90	119	45	122	107	64	32
C(17)	2,22	1219	1733	1985	57 37	105	92	106	163	147	58	97
C(18)	2,78	1669	1784	2146	122 73	38	116	153	88	45	110	52
C(19)	3,33	1614	2060	2406	125 62	48	107	152	69	40	90	50
C(20)	4,45	1670	2081	3128	86 39	52	66	57	137	25	108	74
C(21)	4,54	1856	2205	2992	90 80	10	122	146	81	147	58	96
C(22)	3,44	1763	1886	2526	70 25	75	83	76	164	21	111	88
O(1)	4,25	1303	1817	3339	105 38	55	112	62	143	27	65	100
O(2)	2,53	1463	1626	2194	85 42	48	111	50	132	158	100	70
O(3)	2,17	0915	1707	2128	25 72	74	73	162	83	108	89	18
O(4)	2,72	0987	1912	2391	15 75	86	75	164	95	92	96	6
O(5)	1,74	1197	1267	1888	23 113	92	108	132	131	103	128	41 116
O(6)	3,07	1673	2078	2744	26 76	68	64	112	145	93	26	62
O(7)	7,19	1620	2892	4056	59 126	52	96	139	130	148	105	02

C(12)

C(13)O(7)

-0.022(11)-0.026(13)

-0,009(9)

marquable est la position de la γ -lactone qui s'attache entre C(2) et C(4), et non entre C(4) et C(6). Le benzoate est lié au carbone C(6). Les trois cycles sont cis si bien que la molécule se replie sur elle-même de telle façon que la y-lactone et la δ -lactone sont dans des plans presque parallèles (Fig. 2).

Les longueurs de liaison et les angles intramoléculaires sont représentés sur la Fig. 3. Les différentes liaisons entre carbones (sp3) ont une valeur moyenne de 1,533Å avec un écart-type de 0,013 Å par rapport à la valeur théorique de 1,537 Å (Sutton, 1965).

La précision donnée par les moindres carrés est de 0,009 Å sur les distances dans le noyau de la molécule. Elle est beaucoup moindre en ce qui concerne le furanne et le benzène où σ atteint 0.02 Å. Les atomes d'hydrogène de ces deux cycles sont peu visibles et la coordonnée x du carbone C(20) a oscillé constamment au cours de l'affinement. L'agitation thermique est beaucoup plus grande pour ces chaînes annexes. Les clichés de rayons X présentent d'ailleurs des zones de diffusion localisées qui pourraient traduire la rotation des plans du benzène et du furanne autour des liaisons C(16)-C(17) et C(7)-C(10).

Tableau 5. Plans movens et distances en Å des atomes à ces plans

u I aatana	Ecart-type: $\sigma \times$	103.					
γ-Lactone	-0.7803x+0.6173y-0.100	02z - 5,1010	0 = 0				
Atomes	dans le plan	Atomes	hors du plan				
O(3)	0 Å	C(2)	` ^				
O(15)	0	C(3)	0,785 (7)				
O(4)	0	C(4)	0,071 (6)				
δ -Lactone							
	-0.9713x + 0.1774y - 0.158	83z - 0,280	9 = 0				
Atomes	dans le plan	Atomes	hors du plan				
	-0,017 (7) Å		-0,483 (7) Å				
	-0,005 (8)		-0.303(7)				
	-0,006 (8)	C(7)	-0.072(8)				
O(2)	-0,005 (6)	C(15)	-2,661(6)				
			-2,763(5)				
Benzène		O(4)	-3,087(5)				
Belizelle	-0,2935x+0,8570y-0,423	37z - 1,052	2=0				
Atomes	dans le plan	Atomes	hors du plan				
C(17)		C(6)	-0,006 (6) Å				
C(18)	-0.023(7)	C(C16)	-0.049(7)				
C(19)	-0.012(11)	O(5) O(6)	-0.058(5)				
C(20)	-0,005(10)	O(6)	-0,206(7)				
C(21)	-0,009 (10)	H(6)	-0,228(15)				
C(22)	-0,003 (8)	H(6)	-0,228(15)				
Furanne							
-0.0570x - 0.7643y - 0.6424z + 8.4382 = 0							
Atomes	dans le plan	Atomes	hors du plan				
C(10)	-0,019 (7) Å	C(7)	-0,039 (6) Å				
C(11)	-0,007 (10)	H(7)	-0.071(15)				

Les équations des différents plans moyens et les distances des atomes à ces plans sont données dans le Tableau 5. L'angle entre les plans des deux lactones est de 27°. Le furanne et le benzène forment un angle de $66^{\circ}5$. Le cycle de la δ -lactone est en forme de demichaise. L'oxygène O(6) est en dehors du plan du benzène, à 0,206 Å, du même côté que l'hydrogène H(6) situé lui aussi à 0.228 Å du plan. La liaison C(6)-H(6) fait un angle de 6,7° avec le plan du benzène. La liaison C(7)-H(7) fait un angle de 12,4° avec le plan du furanne, H(7) étant à 0,07 Å de ce plan.

Nous avons calculé les angles dièdres autour des liaisons principales du noyau de la molécule et nous les avons représentés sur la Fig. 4. Ils sont en bon accord avec les angles déduits des mesures de r.m.n. (Parello, 1970).

La Fig. 5 représente la disposition des molécules dans la maille. Elles s'enroulent autour des axes hélicoïdaux parallèles à l'axe b, et sont disposées de telle sorte que

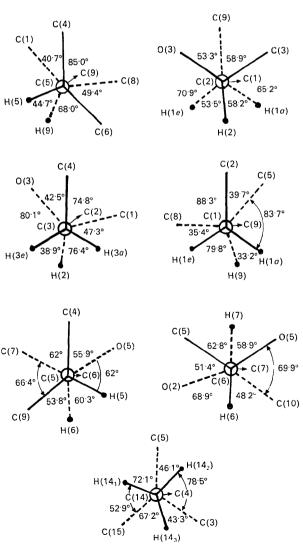


Fig. 4. Principaux angles dièdres.

les plans des furannes de deux molécules soient presque parallèles et distants de 3,59 Å. Aucune distance intermoléculaire n'est remarquable sauf les distances entre une molécule et son homologue translatée de a:

$O(6)\cdots C(14)$	3,28 Å	$O(6)\cdots H(141)$	2,82Å
$O(4) \cdots C(9)$	3,29	$O(4)\cdots H(9)$	2,37
$O(4) \cdots C(6)$	3,41	$O(4)\cdots H(6)$	2,35

Conclusion

Par la détermination de la structure cristalline de l'isocollybolide et l'établissement de sa formule (III), on peut déduire la formule du collybolide (IV).

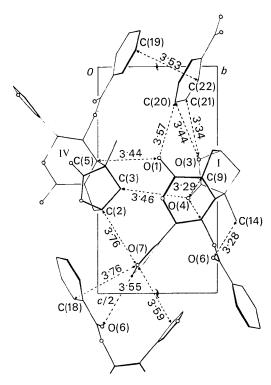


Fig. 5. Disposition des molécules dans la maille; distances en Å.

L'aspect en forme de cage de l'isocollybolide est très différent de celui du collybolide, où la position *trans* des protons H(5) et H(9) donne une forme ouverte à la molécule: la γ -lactone se place, non plus dans un plan parallèle, mais dans un plan perpendiculaire à la δ -lactone.

Je suis reconnaissante à M M.-M. Janot de son intérêt constant au cours de ce travail. Je tiens également à remercier M P. Potier de ses encouragements et pour les beaux cristaux d'isocollybolide et M J. Parello pour de fructueuses discussions. Que M C. Riche trouve ici l'expression de ma gratitude pour la mise en commun de nombreux programmes originaux.

Références

Bui, A. M., Parello, J., Potier, P. & Janot, M.-M. (1970). C. R. Acad. Sci., Paris, 270, 1022.

Busing, W. R., Martin, K. O. & Levy, H. A. (1962). ORFLS. A Fortran Crystallographic Least Squares Program. Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge Tennessee.

GORIS, A. & MASCRE, M. (1911). C. R. Acad. Sci., Paris, 153, 1082.

JANOT, M.-M., LE MEN, J. & POURRAT (1957). Travaux non publiés.

Janot, M.-M., Bui, A. M., Parello, J., Pascard-Billy, C. & Potier, P. (1970). Résultats non publiés.

Karle, I. L., Dragonette, K. S. & Brenner, S. A. (1965). *Acta Cryst.* 19, 713.

KARLE, J. & HAUPTMAN, A. (1956). Acta Cryst. 9, 45. KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849. PARELLO, J. (1970). Communication personnelle.

RICHE, C. (1970). C. R. Acad. Sci., Paris, 271, 396.

Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions. Supplement, pp. 1956–1959. London: The Chemical Society.